Abstract
Abstract We study the existence of solutions for Darcy’s problem coupled with the heat equation under singular forcing; the right-hand side of the heat equation corresponds to a Dirac measure. The model studied involves thermal diffusion and viscosity depending on the temperature. We propose a finite element solution technique and analyze its convergence properties. In the case where thermal diffusion is independent of temperature, we propose an a posteriori error estimator and study its reliability and efficiency properties. We illustrate the theory with numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.