Abstract

In Lipschitz two- and three-dimensional domains, we study the existence for the so-called Boussinesq model of thermally driven convection under singular forcing. By singular we mean that the heat source is allowed to belong to [Formula: see text], where [Formula: see text] is a weight in the Muckenhoupt class [Formula: see text] that is regular near the boundary. We propose a finite element scheme and, under the assumption that the domain is convex and [Formula: see text], show its convergence. In the case that the thermal diffusion and viscosity are constants, we propose an a posteriori error estimator and show its reliability. We also explore efficiency estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.