Abstract

In this paper we study the homogenization of the Dirichlet problem for the Stokes equations in a perforated domain with multiple microstructures. First, under the assumption that the interface between subdomains is a union of Lipschitz surfaces, we show that the effective velocity and pressure are governed by a Darcy law, where the permeability matrix is piecewise constant. The key step is to prove that the effective pressure is continuous across the interface, using Tartar’s method of test functions. Secondly, we establish the sharp error estimates for the convergence of the velocity and pressure, assuming the interface satisfies certain smoothness and geometric conditions. This is achieved by constructing two correctors. One of them is used to correct the discontinuity of the two-scale approximation on the interface, while the other is used to correct the discrepancy between boundary values of the solution and its approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.