Abstract
In an inhomogeneous nonlinear light guide doped with two-level resonant atoms, the generalized coupled variable-coefficient nonlinear Schrodinger-Maxwell-Bloch system can be used to describe the propagation of optical solitons. In this paper, the Lax pair and conservation laws of that model are derived via symbolic computation. Furthermore, based on the Lax pair obtained, the Darboux transformation is constructed and soliton solutions are presented. Figures are plotted to reveal the following dynamic features of the solitons: (1) Periodic mutual attractions and repulsions of four types of bound solitons: of two one-peak bright solitons; of two one-peak dark solitons; of two two-peak bright solitons and of two two-peak dark solitons; (2) Two types of elastic interactions of solitons: of two bright solitons and of two dark solitons; (3) Two types of parallel propagations of parabolic solitons: of two bright solitons and of two dark solitons. Those results might be useful in the study of optical solitons in some inhomogeneous nonlinear light guides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.