Abstract

We construct symmetry preserving and symmetry broken N-bright, dark and antidark soliton solutions of a nonlocal nonlinear Schrödinger equation. To obtain these solutions, we use appropriate eigenfunctions in Darboux transformation (DT) method. We present explicit one and two bright soliton solutions and show that they exhibit stable structures only when we combine the field and parity transformed complex conjugate field. Further, we derive two dark/antidark soliton solution with the help of DT method. Unlike the bright soliton case, dark/antidark soliton solution exhibits stable structure for the field and the parity transformed conjugate field separately. In the dark/antidark soliton solution case we observe a contrasting behaviour between the envelope of the field and parity transformed complex conjugate envelope of the field. For a particular parametric choice, we get dark (antidark) soliton for the field while the parity transformed complex conjugate field exhibits antidark (dark) soliton. Due to this surprising result, both the field and PT transformed complex conjugate field exhibit sixteen different combinations of collision scenario. We classify the parametric regions of dark and antidark solitons in both the field and parity transformed complex conjugate field by carrying out relevant asymptotic analysis. Further we present 2N-dark/antidark soliton solution formula and demonstrate that this solution may have 22N×22N combinations of collisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.