Abstract

LHCb will have an upgrade of its detector in 2018. After the upgrade, the LHCb experiment will run at a high luminosity of 2 × 1033 cm−2s−1. The upgraded detector will be read out at 40 MHz with a highly flexible software-based triggering strategy. The Data Acquisition (DAQ) system of LHCb reads out the data fragments from the Front-End Electronics and transports them to the High-Lever Trigger farm at an aggregate throughput of ~ 32 Tbit/s. The DAQ system will be based on high speed network technologies such as InfiniBand and/or 10/40/100 Gigabit Ethernet. Independent of the network technology, there are different possible architectures for the DAQ system.In this paper, we present our studies on the DAQ architecture, where we analyze size, complexity and relative cost. We evaluate and compare several data-flow schemes for a network-based DAQ: push, pull and push with barrel-shifter traffic shaping. We also discuss the requirements and overall implications of the data-flow schemes on the DAQ system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.