Abstract
Daptomycin is a lipopeptide antibiotic approved for use against Gram-positive organisms, including highly resistant species. A number of studies have suggested that daptomycin kills bacteria by membrane permeabilization and depolarization. Recently a model membrane system consisting of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) in a 1:1 ratio and the ionophore CCCP was proposed as a simple model to investigate the mode of action of daptomycin and resistance mechanisms at a molecular level. This study investigates how this model depends on the composition of the membrane and the role of CCCP. Results obtained from a fluorescence assay using pyranine show that daptomycin causes leakage in liposomes of limited stability and that CCCP promotes this leakage. A different model membrane system used here, which relies on ion selective dyes such as 4,4'-[1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diylbis(5-methoxy-6,2-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester (PBFI), and 4,4'-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,2-benzofurandiyl)]bis-, tetraammonium salt (SBFI), is a more robust alternative. Findings based on this newer model suggest that daptomycin is selective for potassium.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have