Abstract

Cardiac dysfunction in the aged heart reflects abnormalities in cardiomyocyte Ca(2+) homeostasis including altered Ca(2+) cycling through the sarcoplasmic reticulum (SR). The ryanodine receptor antagonist dantrolene exerts antiarrhythmic effects by preventing spontaneous diastolic Ca(2+) release from the SR. We tested the hypothesis that dantrolene prevents spontaneous Ca(2+) release without altering excitation-contraction coupling in aged myocardium. Left ventricular cardiomyocytes isolated from young (3 to 4 mo) and aged (24-26 mo) C57BL/6 mice were loaded with the Ca(2+) indicator fluo-4. Amplitudes of action potential-induced Ca(2+) transients at 1-Hz pacing were similar between young and aged mice, yet cell shortening was impaired in aged mice. Isoproterenol (1 μM) increased Ca(2+) transient amplitude and cell shortening to identical levels in young and aged; dantrolene (1 μM) had no effect on Ca(2+) transients or cell shortening during pacing. Under Ca(2+) overload conditions induced with 10 mM extracellular Ca(2+) concentration, spontaneous Ca(2+) waves were of diminished amplitude and associated with lower SR Ca(2+) content in aged versus young mice. Despite no effect in young mice, dantrolene increased SR Ca(2+) content and Ca(2+) wave amplitude in aged mice. In the presence of isoproterenol following rest from 1-Hz pacing, Ca(2+) spark frequency was elevated in aged mice, yet the time to spontaneous Ca(2+) wave was similar between young and aged mice; dantrolene decreased Ca(2+) spark frequency and prolonged the time to Ca(2+) wave onset in aged mice with no effect in young mice. Thus dantrolene attenuates diastolic Ca(2+) release in the aged murine heart that may prove useful in preventing cardiac dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call