Abstract

By considering the friction force due to the interaction of plasmonic waves and graphene lattice, the damping properties (lifetime and propagation length) of long-wavelength plasmonic waves on a monolayer graphene are studied by means of a perturbative method. Electronic excitations on the graphene surface are modeled by an infinitesimally thin layer of massless electron gas, which is described by means of the linearized hydrodynamic theory. The analytical expressions for the frequency dependence of damping function, the propagation length and the lifetime of long-wavelength surface waves on graphene with small intrinsic damping are derived and analyzed. Also, simple expressions for the stored and dissipated energy densities of the surface waves are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.