Abstract

ABSTRACTRecently, we introduced various acceptor impurities into MBE-grown ultra-pure GaAs by conventional high-energy ion implantation and found many novel shallow emissions associated with acceptor-acceptor pairs. Most of these emissions were easily quenched by extremely small amount of residual donor atoms which were unintentionally introduced during doping processes. For the interpretation of impurity effects, the usage of mass-separated atom as dopant source was strongly suggested. Along this consideration, we developed combined ion beam and molecular beam epitaxy (CIBMBE) technology, in which damage-free doping with high mass purity (M/ΔM=100) is expected to be possible. We here present the results of low-energy (100 eV) carbon ion doping using CIBMBE method. Samples were prepared asa function of growth temperature (Tg=400-700°C) and ion beam current. Net hole concentration, |NA-ND| as high as ~1×1020 cm-3 was obtained in as-grown samples. In 2K photoluminescence spectra, emissions due to acceptor-acceptor pairs exhibit specific energy shift with growing |NA-ND|. Results indicate that carbon doping can be made efficiently even at Tg as low as 500°C without any post heat treatment. These results also tell that by CIBMBE method no serious radiation damages are produced and the undesired impurity contamination can be considerably suppressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call