Abstract

The process–microstructure–property relationship of high-strength 7000 series aluminum alloys during fatigue crack propagation (FCP) is highly relevant for safety during the design and service of aircraft structural components. It is scientifically evident that many metallurgical factors affect FCP properties, but partly contradictory or inconclusive results show that the quantitative description of the relationships is still a major challenge among researchers and engineers. Most research focuses on sheet or plate products and investigations lack quantitative information on the process–property relationship between open-die forged thick products and FCP. The present study contributes to this field by investigating the fatigue crack growth behavior of an open-die forged AA7010-T7452 aluminum alloy. Four different forging conditions comprising different characteristic microstructures are comparatively analyzed. The influence of grain size, grain shape, specimen orientation, crystallographic texture, and primary phase particles is investigated. Fractographic analysis reveals different active damage mechanisms during fatigue crack growth. Based on that, the microstructure features relevant to fatigue damage areidentified in each regime of crack growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.