Abstract
In cold region engineering, the impact of coupled compression–shear loading on frozen soil foundations is a critical issue that urgently needs to be addressed, as it often significantly reduces bearing capacity and can cause structural failures. Accurately characterizing the mechanical behavior of frozen soil under dynamic coupled compression–shear loading is essential for enhancing the safety and stability of cold region engineering projects. This study prepared four frozen-soil specimens with varying tilting angles to investigate failure mechanisms and energy evolution under coupled compression–shear impact loading. The impact-compression experiments were conducted on the specimens under different loading strain rates and temperature conditions using a split Hopkinson pressure bar. The results indicated that the strength of frozen soil was effectively enhanced by higher strain rates and lower temperatures, while it was reduced by increased tilting angle. The fracturing morphology of frozen soil was analyzed from both microscopic and macroscopic perspectives to reveal its failure mechanisms. To quantify the strength characteristics of the frozen soil under various loading conditions, damage variables were defined from an energy-based perspective and incorporated into the Zhu–Wang–Tang viscoelastic constitutive model. Hence, a dynamic constitutive model for frozen soil under coupled compression–shear loading was developed. The model's predictive capability was validated through comparisons with the experimental data, which revealed a high level of agreement. The results of this study provide practical insights into the failure mechanisms and construction design of frozen soil foundations under coupled compression–shear impact loading in cold region engineering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have