Abstract
In this paper results of the damage assessment of composite panel using the guided wave propagation method are presented. Two approaches of elastic wave generation are investigated: (i) contact, piezoceramic transducer (PZT)-based and (ii) non-contact, air-coupled transducer (ACT)-based. Elastic wave sensing is based on scanning laser Doppler vibrometry (SLDV). Both methods of elastic wave generation are compared based on an analysis of elastic wave propagation and damage localization results. For this purpose wave irregularity mapping (WIM) algorithm was utilized. In this research square panels made of fibre reinforced polymer are investigated. Authors investigate artificial damage in the form of Teflon inserts. In this research low-cost and low-frequency (40 kHz) ACT is utilised. The use of the ACT-based wave generation together with the SLDV-based wave sensing give the possibility of realization of the full noncontact damage localization approach. Moreover, authors analysed the acoustic wave generation by the ACT and its propagation in the air using acousto-optic effect together with SLDV measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.