Abstract

Evaluation of optimal slope angle of an air-coupled transducer (ACT) is important, to allow for effective generation of Lamb waves in solid structures. This effectiveness relies on both generation of desired wave modes, amplitude of measured signals and large coverage area for damage detection. Phenomenon of non-contact elastic waves generation in plate based on ACT is considered assuming few approaches. Numerical modeling in COMSOL is related to the analysis of different plate thicknesses and ACT excitation frequencies. Experimental research is based on wave excitation using piezoceramic ACT with a base excitation frequency of 40 kHz and SLDV measurements for a 1 mm-thick plate. A comprehensive investigation of optimal ACT slope angle for the generation of A<sub>0</sub> mode is included. Propagation of S<sub>0</sub> mode was not observed in numerical as well as experimental results. Optimal slope angle values were estimated in different ways numerically and experimentally with the use of dispersion curves and based on the amplitude of generated waves. Finally, the optimal angle value was determined and utilized for damage detection and localization problem in an aluminum plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.