Abstract

To realize the damage-free finishing of CVD-SiC substrates, which are used as materials for space telescope mirrors and glass lens molds, plasma chemical vaporization machining (PCVM) and plasma-assisted polishing (PAP) were combined. In this study, the properties of such CVD-SiC substrates, including their surface morphology, composition and crystalline orientation, were investigated. Lapping using diamond abrasives and conventional chemical mechanical polishing (CMP) using CeO2 slurry were conducted for comparison with the proposed atmospheric-pressure-plasma-based finishing process. Many scratches and a subsurface damage (SSD) layer were formed by the diamond lapping of CVD-SiC. Conventional CMP using CeO2 slurry was conducted for the damage-free finishing of CVD-SiC. However, the polishing efficiency was very low. In the proposed process, PCVM, which is a noncontact dry etching process, was performed to remove the SSD layer while PAP, which combines plasma modification and soft abrasive polishing, was performed for damage-free surface finishing. PCVM was conducted on a diamond-lapped CVD-SiC surface. After PCVM for a short duration of 5min, the scratches and SSD layer formed by lapping were completely removed, although the surface roughness was slightly increased. PAP using a resin-bonded CeO2 grindstone was conducted to decrease the surface roughness of CVD-SiC processed by diamond lapping and PCVM for 5min, for which a loose-held-type grindstone was demonstrated to be very useful. A flat and scratch-free surface with an rms roughness of 0.6nm was obtained after PAP finishing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call