Abstract

Damage formation and annealing behavior in ion-implanted silicon (Si) have been reported in two different regimes. First, the features of generated defects in ion-implanted submicron Si areas are described, particularly emphasizing changes in the spatial distribution of damage with a reduction in pattern sizes into which implantations are carried out. The results are compared with those obtained by focused ion beam (FIB) implantation in Si. The FIB implanted areas are necessarily doped with a high-density ion current 10 3–10 6 times higher than that in conventional implantation. Therefore, such a high-dose-rate implantation effect induces situations different from those encountered in the conventional method. Second, damage creation and its characteristic behavior with annealing are described for high-energy (1–3 MeV) ion-implanted Si. Specific annealing behaviors of defects are clarified in the temperature ranges between 500 and 1300°C, based on whether or not buried amorphous layers are formed in the implanted regions. The density reduction and configuration changes of defects between furnace annealing and rapid thermal annealing are compared. Also, the effect of bulk material nature (CZ or FZ) on defect growth is discussed in terms of interactions between oxygen atoms in CZ Si and defects. This interaction phenomenon is useful for gettering of metallic impurities harmful for device performance in Si.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call