Abstract

As a new composite material with high strength, toughness, and heat resistance, the continuous fiber-reinforced polyaryl ether sulfone ketone (PPESK) thermoplastic resin matrix composite (CFRP) has a wide temperature range, which is attributed to the complex temperature sensitivity of the matrix. The failure evolution characteristics under different conditions are not clear yet, which significantly limits its development and application to high-precision equipment. In this work, in order to deeply explore the full three-dimensional (3D) multi-scale multi-physics damage evolution mechanism of the CFRP over a wide temperature range, macroscale cross-temperature stretching/bending experiments, computer tomography (CT) scanning, and microscale scanning electron microscopy (SEM) are performed to effectively capture the overall damage morphology and local fiber/matrix damage failure characteristics of the material. The results show that the reinforcement with continuous fibers increases the tensile strength of the CFRP by 14–45 times and its bending strength by 2–6 times compared to those of the PPESK matrix in the cross-temperature domain. Moreover, the main failure mechanism of the CFRP in the cross-temperature domain is matrix crushing and fiber fracture at room temperature and fiber fretting slip and matrix viscous flow at high temperatures. This further explains the deformation mechanism of the CFRP, which can maintain its stability at high temperatures (low elongation at break: 1%–1.2%). The unique trans-temperature regional energy evolution and continuous fiber reinforcement of the material matrix resin PPESK lay the synergic stability of the high temperature performance and damage morphology of the CFRP. In particular, a cell model is constructed to further reveal the damage evolution characteristics of the matrix, fiber, and interface of the CFRP at the micro-scale. Combined with the failure mode theory and the performance degradation mechanism of composite materials, the temperature influence factor is introduced to formulate a multi-scale full 3D temperature-dependent damage evolution constitutive model of the CFRP over a wide temperature range. The constitutive model of the CFRP is incorporated in finite element software, and the simulation results are compared with the experimental ones for validation. The results show that the model developed in this work can effectively characterize the complex mechanical damage morphology and progressive failure characteristics of the CFRP over a wide temperature range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call