Abstract

AbstractCurrent research on rock damage in mining floors primarily focuses on the seepage‐stress coupling effect, overlooking the fact that rock masses in coal measure strata are predominantly layered. To address this gap, cyclic loading and unloading triaxial tests were conducted. Additionally, theoretical analysis, mathematical statistics, and other methods were used to investigate the damage evolution law of layered rock masses in coal measures. This investigation was carried out under the coupled effects of a specific stress path, characterized by ‘stress concentration‐stress unloading‐stress recovery’, and a high confined water seepage field. The results show that the compression modulus increases with the increase in confining pressure and osmotic pressure, but its increasing trend gradually slows down. Within a certain range, increasing the confining pressure and osmotic pressure helps to close rock fractures and increase stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.