Abstract

Due to own good high temperature mechanical properties, the C/SiC screwed/bonded hybrid joints are considered as an important development direction of vehicle connection structures. However, the difficulty of directly monitoring the interior of the hybrid joints during the bearing presents a potential challenge to the structural damage assessment. In this study, the damage process of the hybrid joints subjected to tensile loading was monitored and characterized based on the in-situ micro-CT technique. The intrinsic relationship between the mechanical responses of the hybrid joints and the local damage evolution was elucidated by observing the variation of the deposited SiC void volume at the overlap interface. The dual inhomogeneity of SiC bonding layer was quantitatively characterized utilizing the average failure rate and determination coefficient. The coupling influence mechanism of prefabricated bottom hole size and online connection process on the final assembly clearance was revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.