Abstract
In this work we propose an automatic damage detection procedure for truss structures. The procedure exploits the natural frequencies of the structure, which can be estimated from vibrational signals measured by sensors, and provides as output the classification of the structure state as healthy or damaged. The approach developed for anomaly detection is based on the use of Principal Component Analysis (PCA) for the reconstruction of the natural frequencies as they should be in a healthy truss structure. Then, the occurrence of damage is detected by applying the Q-statistic test to the differences (residuals) between the observed natural frequencies and their values reconstructed by the PCA model. The proposed damage detection strategy is applied to a synthetic dataset containing the natural frequencies of healthy and damaged truss structures obtained by finite element simulations. The frequency distributions account for structural properties and boundary conditions variability, possibly introduced by variation in the structure operational conditions (e.g., ambient temperature, fluid flow, environmental noise). The obtained results show that the proposed model is able to correctly recognize the state of the truss structure with a limited number of false and missed alarms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.