Abstract
The belt conveyor is an essential piece of equipment in coal mining for coal transportation, and its stable operation is key to efficient production. Belt surface of the conveyor is vulnerable to foreign bodies which can be extremely destructive. In the past decades, much research and numerous approaches to inspect belt status have been proposed, and machine learning-based non-destructive testing (NDT) methods are becoming more and more popular. Deep learning (DL), as a branch of machine learning (ML), has been widely applied in data mining, natural language processing, pattern recognition, image processing, etc. Generative adversarial networks (GAN) are one of the deep learning methods based on generative models and have been proved to be of great potential. In this paper, a novel multi-classification conditional CycleGAN (MCC-CycleGAN) method is proposed to generate and discriminate surface images of damages of conveyor belt. A novel architecture of improved CycleGAN is designed to enhance the classification performance using a limited capacity images dataset. Experimental results show that the proposed deep learning network can generate realistic belt surface images with defects and efficiently classify different damaged images of the conveyor belt surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.