Abstract

The degradation of the elastic properties of composite laminates with intralaminar cracks is caused by reduced stress in the damaged layer which is mainly due to two parameters: the crack opening displacement (COD) and the crack sliding displacement (CSD). In this paper these parameters are measured experimentally, providing laminate stiffness reduction models with valuable information for validation of used assumptions and for defining limits of their application. In particular, the displacement field on the edges of a [0/ +704/ −704]s glass fiber/epoxy laminate specimens with multiple intralaminar cracks is studied, and the COD and CSD dependence on the applied mechanical load is measured. The specimen full-field displacement measurement is carried out using ESPI (electronic speckle pattern interferometry). By studying the displacement discontinuities, the crack face displacements were measured. A comparison between the COD and the CSD (for the same crack) is performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.