Abstract
The method of damage analysis of reinforced concrete columns based on the fiber element model is established by combining the uniaxial damage constitutive model of concrete and steel with the fiber beam–column element model. The quasi-static test and the shaking table test of reinforced concrete columns are simulated and analyzed, respectively. The results show that the established fiber element model can predict nonlinear mechanical behavior and the damage distribution of reinforced concrete columns with good accuracy. Furthermore, the model can effectively simulate the evolution process of damage of columns, and describe weak parts of columns, and has high computational efficiency and solution accuracy, thus providing a practical analysis method for the simulation of building structures during earthquake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.