Abstract

This work focuses on the implementation of damage mechanics model to explain and understand failure mechanisms of the concrete structures. A tensorial damage theory and an isotropic application to the arch ribs of a real bridge are presented. Two reinforced concrete arch ribs of a 28 year old bridge has been removed from the field to the laboratory. They were loaded up to failure in order to study the remaining strength of the structure. The damage model involves three independent parameters for simulating the damage behaviors of the concrete material. The damage theory—additional load—finite element method is developed to simulate numerically the failure process of the RC structures based on the proposed damage model. The predicted displacements, strains and failure mode of the RC arch are good agreement with the experimental results. The values of the three material parameters that describe the damage characteristics of concrete were obtained. The numerical calculations revealed the interested behaviors of concrete in a damaging process. The proposed damage model can be used effectively to describe the damage and fracture behaviors of concrete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.