Abstract

To better understand the effect of repeated reverse stress in solder joints, a new testing method was developed. Tin-silver solder joints were fabricated, constrained between Cu blocks, and then subjected to repeated shear loading in a tensile tester. Constant strain amplitudes were applied to simulate service conditions. However, large loads were used to accelerate the damage accumulation. Microstructural features of the damage were very similar to those found with studies on thermomechanical fatigue (TMF) of small, single shear lap samples. Concentrated-shear banding or striations were observed to form along Sn dendrites. The load behavior of the solder with each cycle and during hold times at the extreme strain amplitude was consistent with damage accumulating with each successive cycle. Effects of strain amplitude, hold times at the stress extremes, number of cycles, and solder-joint thickness were found to play significant roles on the stress-strain behavior and surface damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.