Abstract
Solder joints in electronic packages experience cyclical thermally induced strain when temperature fluctuations are encountered in service. This study investigates three parameters that affect the microstructure and therefore the thermal fatigue behavior of 60Sn-40Pb solder joints. These parameters are: 1) the effect of a tensile component in thermal fatigue, 2) solder joint thickness variations, and 3) hold time variations at the elevated temperature portion of the thermal cycle. Solder joints were thermally fatigued in a tension/compression deformation mode. Cracks developed both in the interfacial intermetallic layer (early in thermal fatigue) and in the coarsened regions of the microstructure of the solder joint (after many more cycles). The effect of joint thickness on solder joints thermally fatigued in shear was also explored. Solder joint thickness was found not to significantly affect fatigue lifetimes. The effect of an increase in the hold time at the elevated temperature portion of the thermal fatigue cycle was also investigated. It was found that time spent at the high temperature end of the fatigue cycle does not determine solder joint lifetime, rather it is the combination of the amount of deformation induced during thermal fatigue in concert with the elevated temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.