Abstract

BackgroundWhile transcriptomics have become a valuable tool for linking physiology and ecology in aquatic microbes, the temporal dynamics of global transcriptomic patterns in Microcystis have rarely been assessed. Furthermore, while many microbial studies have explored expression of nutrient transporter genes, few studies have concurrently measured nutrient assimilation rates. Here, we considered how the global transcriptomic patterns and physiology of the cyanobacterium, Microcystis aeruginosa, changed daily as cells were grown from replete to deficient nitrogen (N) conditions and then back to replete conditions.ResultsDuring N deprivation, Microcystis downregulated genes involved in photosynthesis and respiration, carbon acquisition, lipid metabolism, and amino acid biosynthesis while upregulating genes involved in N acquisition and transport. With increasing N stress, both the strength of expression and number of genes being differentially expressed increased, until N was restored at which point these patterns reversed. Uptake of 15N-labeled nitrate, ammonium and urea reflected differential expression of genes encoding transporters for these nutrients, with Microcystis appearing to preferentially increase transcription of ammonium and urea transporters and uptake of these compounds during N deprivation. Nitrate uptake and nitrate transporter expression were correlated for one set of transporters but not another, indicating these were high and low affinity nitrate transporters, respectively. Concentrations of microcystin per cell decreased during N deprivation and increased upon N restoration. However, the transcript abundance of genes involved in the synthesis of this compound was complex, as microcystin synthetase genes involved in peptide synthesis were downregulated under N deprivation while genes involved in tailoring and transport were upregulated, suggesting modification of the microcystin molecule under N stress as well as potential alternative functions for these genes and/or this toxin.ConclusionsCollectively, this study highlights the complex choreography of gene expression, cell physiology, and toxin synthesis that dynamic N levels can elicit in this ecologically important cyanobacterium. Differing expression patterns of genes within the microcystin synthetase operon in response to changing N levels revealed the potential limitations drawing conclusions based on only one gene in this operon.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2275-9) contains supplementary material, which is available to authorized users.

Highlights

  • While transcriptomics have become a valuable tool for linking physiology and ecology in aquatic microbes, the temporal dynamics of global transcriptomic patterns in Microcystis have rarely been assessed

  • To assess the choreography of gene expression and cell physiology we examined expression patterns of microcystin synthetase genes and genes relating to N transport, carbon acquisition, and photosynthesis in unison with levels of cellular microcystin and nutrients, as well as the uptake rate of nitrogenous compounds and bicarbonate

  • In summary, during N deprivation, Microcystis downregulated genes involved in photosynthesis, respiration, carbon acquisition, lipid metabolism, and amino acid biosynthesis while expression of genes relating to N acquisition and transport was upregulated

Read more

Summary

Introduction

While transcriptomics have become a valuable tool for linking physiology and ecology in aquatic microbes, the temporal dynamics of global transcriptomic patterns in Microcystis have rarely been assessed. There appears to be a link between N and microcystin production, whereby Ndeprived Microcystis cells display reduced transcription of microcystin synthetase genes and decreased microcystin content as compared to replete N cells [11]. This observation has been supported by culture studies [10, 12,13,14,15] and field studies that have found that increases in exogenous N concentrations have been associated with increases in microcystin in lakes [5, 11, 13,14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call