Abstract

Fiber lasers around 2 µm band have attractive applications, such as coherent detecting, material processing, pump source for mid-IR lasers based on nonlinear frequency shift, etc. Fiber gas Raman lasers (FGRLs) based on the stimulated Raman scattering of the gas molecules filled in the hollow-core fibers (HCFs) have been proved an efficient method to enrich the wavelengths of fiber lasers. In this paper, we demonstrated a deuterium-filled fiber gas Raman laser working at 2147 nm. The pump laser is directly coupled into the HCF through the fusion splice between the HCF and the solid-core fiber. By adjusting the pressure, fiber length as well as the repetition frequency of the 1971 nm pump laser, a maximum average Raman power of ~2.57 W was obtained, with corresponding efficiency of ~40%. This work provides a simple and compact configuration for 2.1 µm fiber lasers, which is significant for their application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call