Abstract
d-Malate inhibits a Krebs cycle enzyme and the tubular transport of α-ketoglutarate, an intermediate of the Krebs cycle and the driving force for rat organic anion transporter 1 (rOAT1) and rOAT3 in the kidney. This study examined the effects of d-malate on the rat organic anion transport system. The uptake of 6-carboxyfluorescein by HEK293 cells expressing rOAT1 or rOAT3 was not affected by d-malate and l-malate. Up to 60min after the intravenous injection of phenolsulfonphthalein (PSP), a typical substrate of the renal organic anion transporters, as a bolus to rats, 47.1% of the dose was recovered in the urine, and its renal clearance was estimated to be 8.60ml/min/kg. d-Malate but not l-malate interfered with its renal excretion, resulting in the delayed elimination of PSP from plasma. No effect of d-malate was recognized on creatinine clearance or the expression level of rOAT3 in the kidney cortex. d-Malate increased the plasma concentration of α-ketoglutarate. In addition, the compound greatly stimulated the renal excretion of α-ketoglutarate, implying that d-malate inhibited its reabsorption. The content of α-ketoglutarate was significantly decreased in the kidney cortex of rats administered d-malate. Collectively, this study shows that d-malate abrogates the tubular secretion of PSP, and the reduction of the renal content of α-ketoglutarate was proposed to be one of the mechanisms. A relationship between the reabsorption of α-ketoglutarate and the basolateral uptake of organic anion in the kidney is suggested.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have