Abstract

The long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) experiment is the experiment of choice for visualizing heteronuclear long-range coupling interactions n JCH across 4-6-bonds and is experimentally superior to the decoupled heteronuclear multiple-bond correlation (D-HMBC) experiment. Yet, the exact reasons have not been fully understood and established. On the basis of our recent investigation of the nonrefocused variants LR-HSQC and HMBC, we have extended a JHH' -dedicated investigation to the D-HMBC and LR-HSQMBC experiments. Unlike the nonrefocused variants, the influence of homonuclear couplings JHH' on the intensity of long-range n JCH cross-peaks is not easily predictable and may be summarized as follows: (a) irrespective of the magnitude and number of JHH' interactions long-range n JCH cross-peaks are more intense in D-HMBC spectra as long as the evolution delay Δ is not too large, because in contrast to LR-HSQMBC no JHH' -caused intensity zeroes will occur. (b) If JHH' is small and Δ large, the intensity of cross peaks in D-HMBC spectra may be weakened or may even vanish at Δ=(0.25+0.5k)/JHH ', whereas for the LR-HSQMBC this unwanted effect occurs at Δ=k+0.5/JHH' . Consequently, when Δ is adjusted to visualize weak n JCH long-range correlations, our findings corroborate that there are potentially more cross-peaks expected to show up in a LR-HSQMBC spectrum compared with a D-HMBC spectrum. This has been indeed noticed experimentally, even though the intensity of a many long-range n JCH cross-peaks may still be higher in the spectra of the D-HMBC experiment correspondingly adjusted for detecting weak n JCH correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.