Abstract

2,4:3,5-Di-O-methylene-D-glucitol (Glux-diol) and dimethyl 2,4:3,5-di-O-methylene-D-glucarate (Glux-diester) have been copolymerized with ethylene glycol and dimethyl terephthalate by polycondensation in the bulk to produce PET copolyesters as well as their respective homopolyesters. These sugar-based bicyclic monomers were synthesized from 1,5-D-gluconolactone, a commercially accessible compound derived from D-glucose. The PET copolyesters with either the diol or the diacid counterpart partially replaced by Glux had molecular weights in the 20000–40000 range and a random microstructure, and they were stable well above 300 °C. The PET copolyesters containing more than 10–15% of sugar-based units were amorphous while those displaying crystallinity were observed to crystallize from the melt at much lower rates than PET. The glass transition temperature of PET dramatically increased with the incorporation of Glux, whichever unit, diol or diacid, was replaced, but the enhancing effect was stronger in the former case. A preliminary evaluation of the mechanical behaviour of these copolyesters indicated that the genuine properties of PET were not substantially impoverished by the insertion of Glux. Compared to PET, the copolyesters exhibited a higher hydrolysis rate and an appreciable susceptibility towards biodegradation. The homopolyesters made of these sugar-based monomers could not be obtained with high enough molecular weights so as to be comparatively evaluated with copolyesters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.