Abstract

The range tree is a fundamental data structure for multidimensional point sets, and, as such, is central in a wide range of geometric and database applications. In this paper we describe the first nontrivial adaptation of range trees to the parallel distributed memory setting (BSP-like models). Given a set of n points in d -dimensional Cartesian space, we show how to construct on a coarse-grained multicomputer a distributed range tree T in time O( s / p + T c (s,p)) , where s = n log d-1 n is the size of the sequential data structure and T c (s,p) is the time to perform an h -relation with h=Θ (s/p) . We then show how T can be used to answer a given set Q of m=O(n) range queries in time O((s log m)/p + T c (s,p)) and O((s log m)/p + T c (s,p) + k/p) , where k is the number of results to be reported. These parallel construction and search algorithms are both highly efficient, in that their running times are the sequential time divided by the number of processors, plus a constant number of parallel communication rounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.