Abstract

We introduce T-duality invariant versions of D-branes in doubled geometry using a global covariant framework based on para-Hermitian geometry and metric algebroids. We define D-branes as conformal boundary conditions for the open string version of the Born sigma-model, where they are given by maximally isotropic vector bundles which do not generally admit the standard geometric picture in terms of submanifolds. When reduced to the conventional sigma-model description of a physical string background as the leaf space of a foliated para-Hermitian manifold, integrable branes yield D-branes as leaves of foliations which are interpreted as Dirac structures on the physical spacetime. We define a notion of generalised para-complex D-brane, which realises our D-branes as para-complex versions of topological A/B-branes. We illustrate how our formalism recovers standard D-branes in the explicit example of reductions from doubled nilmanifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.