Abstract

Collagen fibrils are the main structural component of load-bearing tissues such as tendons, ligaments, skin, the cornea of the eye, and the heart. The D-band of collagen fibrils is an axial periodic density modulation that can be easily characterized by tissue-level X-ray scattering. During mechanical testing, D-band strain is often used as a proxy for fibril strain. However, this approach ignores the coupling between strain and molecular tilt. We examine the validity of this approximation using an elastomeric collagen fibril model that includes both the D-band and a molecular tilt field. In the low strain regime, we show that the D-band strain substantially underestimates fibril strain for strongly twisted collagen fibrils — such as fibrils from skin or corneal tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.