Abstract

In this article, we have demonstrated the in vivo efficacy of D-512 and D-440 in a 6-OHDA-induced unilaterally lesioned rat model experiment, a Parkinson's disease animal model. D-512 is a novel highly potent D2/D3 agonist, and D-440 is a novel highly selective D3 agonist. We evaluated the neuroprotective properties of D-512 and D-440 in the dopaminergic MN9D cells. Cotreatment of these two drugs with 6-OHDA and MPP+ significantly attenuated and reversed 6-OHDA- and MPP+-induced toxicity in a dose-dependent manner in the dopaminergic MN9D cells. The inhibition of caspase 3/7 and lipid peroxidation activities along with the restoration of tyrosine hydroxylase levels by D-512 in 6-OHDA-treated cells may partially explain the mechanism of its neuroprotective property. Furthermore, studies were carried out to elucidate the time-dependent changes in the pERK1/2 and pAkt, two kinases implicated in cell survival and apoptosis, levels upon treatment with 6-OHDA in presence of D-512. The neuroprotective property exhibited by these drugs was independent of their dopamine-agonist activity, which is consistent with our multifunctional drug-development approach that is focused on the generation of disease-modifying symptomatic-treatment agents for Parkinson's disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call