Abstract

The synthesis of covered nanoparticles provides new properties to the materials for biomedical applications. This fully applies to iron oxide nanoparticles. The research aim was to study features of the magnetite nanoparticles synthesized by electron beam technology as well as to investigate their functionalization and cytotoxicity. Nanoparticle characteristics were determined by standard methods. Cytotoxiciy of nanoparticles was studied using erythrocyte model. It was shown that the original magnetite nanoparticles in the sodium chloride matrix can be functionalized with polyvinylpyrrolidone and ethylmethylhydroxypyridine succinate, an antioxidant. All investigated nanoparticles were non-toxic for erythrocytes at concentrations up to 100 μg Fe/ml. At 100-200 μg Fe/ml, they increased the amount of cells expressing phosphatidylserine on the outer membrane, the count of pathological forms of erythrocytes and hemolysis. These phenomena were less pronounced if the nanosystem included the antioxidant. Therefore, magnetite nanoparticles can be obtained by electron beam technology and functionalized to form non-toxic nanosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.