Abstract

Simple SummaryThough the anticancer potentiality of momilactones has been reported in several studies, their cytotoxic mechanism has not been comprehensively scrutinized. In this study, we investigated the cytotoxicity of momilactones A (MA) and B (MB) against acute promyelocytic leukemia (APL) HL-60 and multiple myeloma (MM) U266 cell lines. According to MTT results, MB and the mixture MAB (1:1, w/w) show a substantial inhibition on the cell viability of HL-60 and U266, with IC50 ranging from 4.49 to 5.59 µM. Besides, MB and MAB at 5 µM inhibit HL-60 cells through the regulations of relevant proteins to apoptosis-inducing factors (p-38, BCL-2, and caspase-3) and cell cycle arrest at G2 phase (p-38, CDK1, and cyclin B1). Meanwhile, these compounds enhance U266 apoptosis by altering p-38, BCL-2, and caspase-3 signaling pathways. Significantly, momilactones exhibit a minor effect on a non-cancerous cell line (MeT-5A), implying that they are promising candidates for developing novel anti-APL and anti-MM medicines.This is the first study clarifying the cytotoxic mechanism of momilactones A (MA) and B (MB) on acute promyelocytic leukemia (APL) HL-60 and multiple myeloma (MM) U266 cell lines. Via the MTT test, MB and the mixture MAB (1:1, w/w) exhibit a potent cytotoxicity on HL-60 (IC50 = 4.49 and 4.61 µM, respectively), which are close to the well-known drugs doxorubicin, all-trans retinoic acid (ATRA), and the mixture of ATRA and arsenic trioxide (ATRA/ATO) (1:1, w/w) (IC50 = 5.22, 3.99, and 3.67 µM, respectively). Meanwhile MB, MAB, and the standard suppressor doxorubicin substantially inhibit U266 (IC50 = 5.09, 5.59, and 0.24 µM, respectively). Notably, MB and MAB at 5 µM may promote HL-60 and U266 cell apoptosis by activating the phosphorylation of p-38 in the mitogen-activated protein kinase (MAPK) pathway and regulating the relevant proteins (BCL-2 and caspase-3) in the mitochondrial pathway. Besides, these compounds may induce G2 phase arrest in the HL-60 cell cycle through the activation of p-38 and disruption of CDK1 and cyclin B1 complex. Exceptionally, momilactones negligibly affect the non-cancerous cell line MeT-5A. This finding provides novel insights into the anticancer property of momilactones, which can be a premise for future studies and developments of momilactone-based anticancer medicines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call