Abstract

Medicinal plants have been considered as promising sources of drugs in treating various cancers. Crinum amabile (C. amabile), a plant species from the Amaryllidaceae family, is claimed to be a potential source for cancer chemotherapeutic compounds. Here, we aimed to investigate the potential of C. amabile as an anticancer agent. Dried leaves of C. amabile were serially extracted and our findings showed that chloroform extract (CE) was shown to exhibit cytotoxic effect against all cancer cell lines used. This active extract was further fractionated in which F5 fraction was shown to possess the highest cytotoxicity among all fractions. F5 fraction was then tested in-depth through Annexin V/FITC apoptosis and DNA fragmentation assays to determine its apoptotic effect on MCF-7 cells. Results revealed that F5 fraction only showed induction of cell apoptosis starting at 72-hour treatment while DNA fragmentation was not detected at any of the concentrations and treatment periods tested. Meanwhile, cell proliferation assay revealed that F5 fraction was able to inhibit normal cell proliferation as well as VEGF-induced cell proliferation of normal endothelial cell (HUVECs). In conclusion, F5 fraction from C. amabile leaf CE was able to exhibit cytostatic effect through antiproliferation activity rather than induction of cell apoptosis and therefore has the potential to be further investigated as an anticancer agent.

Highlights

  • Cancer remains as the leading cause of death worldwide, regardless of regions and socioeconomic levels

  • F5 fraction of chloroform extract (CE) demonstrated the highest cytostatic activities against all the human cancer cell lines tested with MCF-7, ER+ breast cancer cells being the most susceptible

  • F5 fraction showed a similar inhibition effect on MDA-MB-231, ER- breast cancer cells, suggesting that the cytostatic effect of F5 fraction was non-cell-specific. This finding provided a noteworthy benefit in which novel promising cytotoxic compound which is effective against both ER+ and ER- breast cancer cells can be isolated from this plant

Read more

Summary

Introduction

Cancer remains as the leading cause of death worldwide, regardless of regions and socioeconomic levels. The incidence of cancer is presumed to escalate owing to age, population growth, and adoption of an unhealthy lifestyle. According to WHO, more than 8.8 million deaths were recorded in 2015, with nearly 70% of them being from low- and middle-income countries [1]. Considerable efforts have been allocated to search for new drugs for the treatment and prevention of cancers each year. The recurrence of tumor cells and the adverse effects of chemotherapy drugs have hindered the efficacy of cancer drugs treatment [2]. There is a constant need to actively search for an alternative in anticancer therapies such as viral-mediated targeted gene therapy [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call