Abstract

All cytoskeletal elements known from eukaryotic cells are also present in bacteria, where they perform vital tasks in many aspects of the physiology of the cell. Bacterial tubulin (FtsZ), actin (MreB), and intermediate filament (IF) proteins are key elements in cell division, chromosome and plasmid segregation, and maintenance of proper cell shape, as well as in maintenance of cell polarity and assembly of intracellular organelle-like structures. Although similar tasks are performed by eukaryotic cytoskeletal elements, the individual functions of FtsZ, MreBs, and IFs are different from those performed by their eukaryotic orthologs, revealing a striking evolutional plasticity of cytoskeletal proteins. However, similar to the functions of their eukaryotic counterparts, the functions conferred by bacterial cytoskeletal proteins are driven by their ability to form dynamic filamentous structures. Therefore, the cytoskeleton was a prokaryotic invention, and additional bacteria-specific cytoskeletal elements, such as fibril and MinD-type ATPases, that confer various functions in cell morphology and during the cell cycle have been observed in prokaryotes. The investigation of these elements will give fundamental information for all types of cells and can reveal the molecular mode of action of cytoskeletal, filament-forming proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.