Abstract
Electrical aspects of cell function manifest in many ways. The most widely studied is the cell membrane potential, Vm, but others include the conductance and capacitance of the membrane, the conductance of the enclosed cytoplasm, as well as the charge at the cell surface (an electrical double layer) producing an extracellular electrical potential, the ζ-potential. Empirical relationships have been identified between many of these, but not the mechanisms that link them all. Here we examine relationships between Vm and the electrical conductivities of both the cytoplasm and extracellular media, using data from a suspensions of red blood cells. We have identified linear relationships between extracellular medium conductivity, cytoplasm conductivity and Vm. This is in contrast to the standard model of a resting membrane potential which describes a logarithmic relationship between Vm and the concentration of permeable ions in the extracellular medium. The model here suggests that Vm is partially electrostatic in origin, arising from a charge imbalance at an inner electrical double-layer, acting across the membrane and double-layer capacitances to produce a voltage. This model describes an origin for coupling between Vm and ζ, by which cells can alter their electrostatic relationship with their environment, with implications for modulation of membrane ion transport, adhesion of proteins such as antibodies and wider cell–cell interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.