Abstract

Two valid ant species, Camponotus rufipes and Camponotus renggeri, have recently been the subject of a broad discussion with reference to taxa synonymization. Both species are quite common among the Neotropical myrmecofauna and share some unique traits, such as the shape of the scape and the pilosity patterns of the tibiae and scapes. A single morphological trait can help distinguish these species; however, only a combination of different approaches can enlighten our view of the complex phylogenetic relationships prevailing in the different populations of these two taxa. Therefore, focusing on the taxonomic issues concerning these two species, a cytogenetic survey including 10 populations of C. rufipes and two populations of C. renggeri was performed. In order to better understand the extent of the relationship between C. rufipes and C. renggeri, two common Neotropical Camponotus species, C. atriceps and C. cingulatus were taken as outgroups. All four species of Camponotus that were studied had 2n = 40 chromosomes (4sm+34st+2t); however, the abundance of chromosome rearrangements observed, combined with several chromosome markers, suggest that C. rufipes and C. renggeri are two good distinct species although closely related. The already reported chromosome translocation 2n = 39 (1m+4sm+32st+2t) for C. rufipes has been found in different populations as in the unprecedented chromosome inversions found both in C. rufipes and in C. renggeri populations. Within the C. renggeri chromosome inversions, both the heterozygous state 2n = 40 (1m+3sm+34st+2t) and the homozygous state, 2n = 40 (2m+2sm+34st+2t) were identified. However, only heterozygous specimens for chromosome inversions were found among C. rufipes, with karyotype configurations distinct from those found in C. renggeri, with 2n = 40 (1m+4sm+34st+2t). None of the populations studied showed signs of mosaic individuals. With respect to rDNA clusters, the 18S rDNA seemed to be more restricted inside the genome, as C. renggeri showed four 18S rDNA clusters, whereas, C. rufipes, C. atriceps, and C. cingulatus showed only two clusters. The chromosome locations of the 5S rDNA clusters were pointed for the first time in Formicidae, and showed itself to be more widely spread over the genome. By combining different chromosome banding approaches it was possible to demonstrate the crucial importance that chromosome inversions played on the karyotype evolution within these ants. The results also showed that chromosome translocations might be a consequence of the chromatin dynamic condition observed among Camponotus species. The homozygosis condition found in a C. renggeri from a Brazilian savanna population for chromosome inversions and the contrasting heterozygous condition for a different kind of chromosome inversion in C. rufipes from the Brazilian coastal rainforest, opens the window for a chromosome race hypothesis within the group C. renggeri and C. rufipes. The wide distribution, rich ecological interactions, genetic diversity, and morphological variability among C. renggeri and C. rufipes justify questioning of the actual taxonomic status of these species. The answer of this puzzle is clear when observing the number of 18S rDNA clusters of these ants, as C. rufipes has only two clusters whereas C. renggeri has four.

Highlights

  • There are many species of ants that form complexes of species and it is not rare to find several morphotypes within many groups of taxa in a similar context as that discussed by Mayr [1]

  • C. atriceps and C. cingulatus species were considered external to the clade (C. renggeri + C. rufipes)

  • In the populations of C. rufipes from the following localities: Lavras, Ponte Nova, Uba, Vicosa, and Curitiba it was observed individuals with 2n = 39 (1m+4sm+32st+2t) (Fig 2c, 2d, 2f, 2g and 2h), a condition that characterizes a chromosome polymorphism. This will be denominated as “type I polymorphism”, hypothesized here as a Robertsonian translocation. Another kind of chromosome rearrangement was detected within C. rufipes in the population of Ponte Nova (Fig 2e) and in C. renggeri at Nova Mutum (Fig 2a and 2b)

Read more

Summary

Introduction

There are many species of ants that form complexes of species and it is not rare to find several morphotypes (formerly called varieties) within many groups of taxa in a similar context as that discussed by Mayr [1]. According to the Biological Species Concept, two “good” species must have well-defined prezygotic or postzygotic barriers This condition is not verified between morphotypes, races, varieties, or whatever the terminology used [2]. In keeping with this idea, Bickford et al [3] defined a cryptic species as a group of two or more morphologically similar species hidden under one single nominal taxon. They are deeply studied under the context of population, some of them involving cytogenetic studies [5]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.