Abstract

BackgroundHistone H3 gene clusters have been described as highly conserved chromosomal markers in invertebrates. Surprisingly, in bivalves remarkable interspecific differences were found among the eight mussels and between the two clams in which histone H3 gene clusters have already been located. Although the family Veneridae comprises 10 % of the species of marine bivalves, their chromosomes are poorly studied. The clams belonging to this family present 2n = 38 chromosomes and similar karyotypes showing chromosome pairs gradually decreasing in length. In order to assess the evolutionary behavior of histone and rRNA multigene families in bivalves, we mapped histone H3 and ribosomal RNA probes to chromosomes of ten species of venerid clams.ResultsIn contrast with the reported conservation of histone H3 gene clusters and their intercalary location in invertebrates, these loci varied in number and were mostly subterminal in venerid clams. On the other hand, while a single 45S rDNA cluster, highly variable in location, was found in these organisms, 5S rDNA clusters showed interspecific differences in both number and location. The distribution patterns of these sequences were species-specific and mapped to different chromosomal positions in all clams but Ruditapes decussatus, in which one of the minor rDNA clusters and the major rDNA cluster co-located.ConclusionThe diversity in the distribution patterns of histone H3 gene, 5S rDNA and 28S rDNA clusters found in venerid clams, together with their different evolutionary behaviors in other invertebrate taxa, strongly suggest that the control of the spreading of these multigene families in a group of organisms relies upon a combination of evolutionary forces that operate differently depending not only on the specific multigene family but also on the particular taxa. Our data also showed that H3 histone gene and rDNA clusters are useful landmarks to integrate nex-generation sequencing (NGS) and evolutionary genomic data in non-model species.

Highlights

  • Histone H3 gene clusters have been described as highly conserved chromosomal markers in invertebrates

  • The histone multigene family includes five main types of genes, those encoding the histones of the nucleosome core particle (H2A, H2B, H3 and H4) and those for the linker histones (H1) [1]. rRNA genes are organized in multigene families, one expressing for the 18S, 5.8S and 28S rRNAs (45S Ribosomal DNA (rDNA)) and the other for the 5S rRNA [2]

  • Histone H3 gene clusters mapped to a single locus in two of the three analyzed species included in clade A1 (Tapetinae: Ruditapes philippinarum and Ruditapes decussatus), to two of the four species in clade A2 (Venerinae: Venus verrucosa and Venus casina), and in the two species in clade A4 (Dosininae: Dosinia exoleta and Dosinia lupinus)

Read more

Summary

Introduction

Histone H3 gene clusters have been described as highly conserved chromosomal markers in invertebrates. In order to assess the evolutionary behavior of histone and rRNA multigene families in bivalves, we mapped histone H3 and ribosomal RNA probes to chromosomes of ten species of venerid clams. When chromosome-specific painting probes are not available, as frequently happens in invertebrates, and karyotypes are composed by chromosomes gradually decreasing in length, chromosomal identification turns into a very difficult task. In those cases, the hybridization of highly conserved repetitive sequences, among which ribosomal. Histone and rRNA genes in invertebrates are usually organized in tandem arrays clustered in one or more chromosomal

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call