Abstract

The goal of this study was to investigate the role of cytochrome P-450 omega-hydroxylase in mediating O2-induced constriction of arterioles in the microcirculation of the hamster. Male Golden hamsters were anesthetized with pentobarbital sodium, and the cremaster muscle or cheek pouch was prepared for observation by intravital microscopy. Arteriolar diameters were measured during elevations of superfusate PO2 from approximately 5 to 150 mmHg. Arteriolar responses to elevated PO2 were determined in the cremaster muscle, in the retractor muscle where it inserts on the cheek pouch, and in the epithelial portion of the cheek pouch. Elevation of superfusion solution PO2 caused a vigorous constriction of arterioles in the cremaster and retractor muscles and in the epithelial portion of the cheek pouch. Superfusion with 10 microM 17-octadecynoic acid, a suicide substrate inhibitor of cytochrome P-450 omega-hydroxylase, and intravenous infusion of N-methylsulfonyl-12,12-dibromododec-11-enamide, a mechanistically different and highly selective inhibitor of cytochrome P-450 omega-hydroxylase, caused a significant reduction in the magnitude of O2-induced constriction of arterioles in the cremaster and retractor muscles. However, arteriolar constriction in response to elevated PO2 was unaffected by 17-octadecynoic acid or N-methylsulfonyl-12,12-dibromododec-11-enamide in the epithelial portion of the cheek pouch. These data confirm that there are regional differences in the mechanism of action of O2 on the microcirculation and indicate that cytochrome P-450 omega-hydroxylase senses O2 in the microcirculation of hamster skeletal muscle, but not in the cheek pouch epithelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call