Abstract

This study evaluated the underlying mechanistic links between genetic variability in vitamin K metabolic pathway genes (CYP4F2 and CYP4F11) and phylloquinone hydroxylation activity using genotype- and haplotype-based approaches. Specifically, we characterized genetic variability in the CYP4F2/CYP4F11 locus and compared common single allele genotypes and common haplotypes as predictors of hepatic gene expression, enzyme abundance, and phylloquinone (VK1) ω-hydroxylation kinetics. We measured CYP4F2 and CYP4F11 mRNA levels, CYP4F2 and CYP4F11 protein abundances, and the VK1 concentration-dependent ω-hydroxylation rate in matched human liver nucleic acid and microsome samples, utilizing a novel in vitro population modeling approach. Results indicate that accounting for the CYP4F2*3 allele alone is sufficient to capture most of the genetic-derived variability in the observed phenotypes. Additionally, our findings highlight the important contribution that CYP4F11 makes toward vitamin K metabolism in the human liver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call