Abstract

Hypoparathyroidism is a common sequela of thyroid surgery; in this study, we aimed at exploring the pathogenesis behind it. The following premises suggest that wound fluid might be a causative agent. (i) Parathyroid hormone secretion is under feedback control by the calcium-sensing receptor, which responds to a diverse array of activating ligands. (ii) Postoperative hypoparathyroidism arises from a secretory deficiency of the parathyroid glands. Even in patients later unaffected by hypoparathyroidism, parathyroid hormone levels drop within hours after surgery. (iii) Wound fluid is bound to enter the tissue around the thyroid bed, where the parathyroid glands are located. Its composition is shaped by a series of proteolytic reactions triggered by wounding. Using thyroid drainage as a surrogate, we addressed the possibility that wound fluid contains compounds activating the calcium-sensing receptor. Drainage fluid ultrafiltrate was found to be rich in amino acids, and on separation by HPLC, compounds activating the calcium-sensing receptor partitioned with hydrophilic matter that rendered buffer acidic. The data show that glutamate and aspartate at millimolar concentrations supported activation of the calcium-sensing receptor, an effect contingent on low pH. In the presence of glutamate/aspartate, protons activated the calcium-sensing receptor with a pH50 of 6.1, and at pH 5, produced maximal activation. This synergistic mode of action was exclusive; glutamine/asparagine did not substitute for the acidic amino acids, nor did Ca2+ substitute for protons. NPS-2143, a negative allosteric receptor modulator completely blocked receptor activation by glutamate/aspartate and by fractionated drainage fluid. Thus, wound fluid may be involved in suppressing parathyroid hormone secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.