Abstract
In the eukaryotic alga Cyanophora paradoxa, which does not contain plastocyanin, photosynthetic electron transport from the cytochrome b6/f complex to photosystem I is mediated by cytochrome c6. Cytochrome c6 was purified to homogeneity by column chromatography and FPLC. The relative molecular mass of the holoprotein was determined by two different mass spectrometric methods (californium-252 plasma desorption and UV matrix-assisted laser desorption ionization) giving 9251 +/- 3.3 Da. N-terminal Edman microsequencing yielded information on approx. 30 amino acid residues. Based on these data and on highly conserved regions of cytochromes c6, degenerate oligonucleotides were designed and used for PCR to amplify the genomic DNA of C. paradoxa. Screening of a C. paradoxa cDNA library yielded several clones coding for preapo-cytochrome c6. The deduced sequence of the mature protein was verified by plasma desorption mass spectrometric peptide mapping and shows high similarity to those of cytochromes c6 from cyanobacteria and algae. Cytochrome c6 appears to be encoded by a single nuclear gene (petJ) in C. paradoxa. As the mature protein is located in the lumen of the thylakoid membrane, it has to traverse three biological membranes as well as the unique peptidoglycan layer of the cyanelles before it reaches its final subcellular locale. Thus the transit sequence is composed of two different targeting signals: a stroma targeting peptide resembling those of higher plants with respect to hydropathy plots and amino acid composition and a hydrophobic signal peptide functioning as a thylakoid-traversing domain. There are indications for alternative sorting of part of the cyanelle cytochrome c6 pool to the periplasmic space. This is the first known bipartite transit sequence of a cyanelle precursor protein from C. paradoxa, a model organism concerning the endosymbiotic origin of plastids. Labeled precursor is efficiently imported into isolated cyanelles, then routed into thylakoids and processed to the mature protein. Hitherto, in vitro protein translocation was not reported for cyanobacterial-type thylakoids.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have