Abstract

In response to Ravera et al. "Fanconi anemia: from DNA repair to metabolism" commenting on our recent publication by Abu-Libdeh, Douiev et al., describing a pathogenic variant in the COX 4I1 gene simulating Fanconi anemia, we wish to add supplementary, pertinent information linking cytochrome c oxidase (COX, mitochondrial respiratory chain complex IV) dysfunction to oxidative stress and nuclear DNA damage. Elevated production of reactive oxygen species (ROS) in COX 4I1 deficient fibroblasts was detected in cells grown in glucose free medium and normalized by ascorbate or N-acetylcysteine supplementation. A pilot study shows positive nuclear staining with antibodies against Phospho-Histone H2A.X (Ser 139) indicating double-stranded DNA breaks (DBSs) both in COX 4I1 and in COX6B1 deficient fibroblasts. Additional investigation is required, and ongoing, to elucidate the precise mechanism of DNA damage in mitochondrial respiratory chain dysfunction and how it could be prevented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call