Abstract

BackgroundThe pollen ornate surface of flowering plants has long fascinated and puzzled evolutionary biologists for their variety. Each pollen grain is contained within a pollen wall consisting of intine and exine, over which the lipoid pollen coat lies. The cytology and molecular biology of the development of the intine and exine components of the pollen wall are relatively well characterised. However, little is known about the pollen coat, which confers species specificity. We demonstrate three types of pollen coat in Zingiberaceae, a mucilage-like pollen coat and a gum-like pollen coat, along with a pollen coat more typical of angiosperms. The morphological differences between the three types of pollen coat and the related molecular mechanisms of their formation were studied using an integrative approach of cytology, RNA-seq and positive selection analysis.ResultsContrary to the ‘typical’ pollen coat, in ginger species with a mucilage-like (Caulokaempferia coenobialis, Cco) or gum-like (Hornstedtia hainanensis, Hhn) pollen coat, anther locular fluid was still present at the bicellular pollen (BCP) stage of development. Nevertheless, there were marked differences between these species: there were much lower levels of anther locular fluid in Hhn at the BCP stage and it contained less polysaccharide, but more lipid, than the locular fluid of Cco. The set of specific highly-expressed (SHE) genes in Cco was enriched in the ‘polysaccharide metabolic process’ annotation term, while ‘fatty acid degradation’ and ‘metabolism of terpenoids and polyketides’ were significantly enriched in SHE-Hhn.ConclusionsOur cytological and comparative transcriptome analysis showed that different types of pollen coat depend on the residual amount and composition of anther locular fluid at the BCP stage. The genes involved in ‘polysaccharide metabolism’ and ‘transport’ in the development of a mucilage-like pollen coat and in ‘lipid metabolism’ and ‘transport’ in the development of a gum-like pollen coat probably evolved under positive selection in both cases. We suggest that the shift from a typical pollen coat to a gum-like or mucilage-like pollen coat in flowering plants is an adaptation to habitats with high humidity and scarcity of pollinators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call