Abstract

Cytidine 3′,-5′-cyclic phosphate (cCMP) occurs in nature and has growth stimulatory activity on L-1210 cells. The initiation of cell growth by cCMP, under conditions where CAMP, cGMP and cUMP delay the onset of proliferation suggests that cCMP may play a regulatory role in the cell metabolism. It has been reported that in 3′,5′-cyclic nucleotides, the phosphate ring fused to the furanose ring resuicts the conformation of the furanose ring to the twist form C(3′) endo C(4′) exo (3T4), in contrast to the C(2′) endo C(3′) endo (2T3) and C(3′) endo C(2′) exo (3T2) twist forms normally found in nucleotides and nucleosides. We have carried out an accurate crystal structure of cCMP and found that the furanose ring in cCMP has the C(3′) endo C(2′) exo conformation (3T2), with a pseudo rotation amplitude (P) of 44° and phase angle τm of 12°. cCMP is in low anti conformation (XCN = 15.4°) and O(5′) has the fixed g conformation. The phosphate ring is constrained to the chair conformation, as in other cyclic nucleotides. The two exocyclic P-O bond distances are short (1.489, 1.476Å) and the ring angle at N(3) is large (125.2°) suggesting that the molecule in the solid state is a zwitterion with a plus charge on N(3). The crystals are hydrated and highly unstable. The three water molecules are highly disordered in ten locations. The crystals of cCMP 3H2O are hexagonal, a = 16.294(3), b = c = 11.099(4)Å, space group P61, final R value is 0.067 for 1620 reflections 230.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call