Abstract

Addition of oleic acid to Krebs-II cells stimulated by 9-fold [ 3H]choline incorporation into choline glycerophospholipids without affecting the selective incorporation of the precursor into diacyl subclass (90% of total [ 3H]choline glycerophospholipids). The total activity of cytidylyltransferase (E.C. 2.7.7.15), the regulatory enzyme of choline glycerophospholipid synthesis, was increased in the particulate fraction at the expense of cytosol. Free [ 3H]oleic acid was also associated with the particulate fraction. Subcellular fractionation of membranes on Percoll gradient, indicated that the endoplasmic reticulum, which contained 90% of total cell free oleic acid, was the unique target for the translocation of cytidylyltransferase. [ 3H]oleic acid was incorporated almost exclusively into phosphatidylcholine and corresponded to a synthesis of 9 nmol/h per 10 6 cells. Based on [ 3H]choline incorporation a net synthesis of 22 nmol/h per 10 6 cells was determined. However, oleic acid treatment did not change the total amount of phosphatidylcholine (45 nmol/10 6 cells) and other phospholipids; also no modification in the subcellular distribution of phospholipids was observed. It is concluded that the stimulation of the de novo synthesis of phosphatidylcholine which involves translocation of cytidylyltransferase onto the endoplasmic reticulum, is accompanied by a renewal of their polar head group. Also exogenous oleic acid induces an enhanced fatty acid turnover, highly specific for phosphatidylcholine. Therefore, Krebs-II cells exhibited a high degree of regulation of their phosphatidylcholine content, suggesting a parallel stimulation of both synthesis and degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.